Topic:Multiple Object Tracking
What is Multiple Object Tracking? Multiple object tracking is the process of tracking and following multiple objects in a video sequence.
Papers and Code
Jul 08, 2025
Abstract:Multiple object tracking (MOT) technology has made significant progress in terrestrial applications, but underwater tracking scenarios remain underexplored despite their importance to marine ecology and aquaculture. We present Multiple Fish Tracking Dataset 2025 (MFT25), the first comprehensive dataset specifically designed for underwater multiple fish tracking, featuring 15 diverse video sequences with 408,578 meticulously annotated bounding boxes across 48,066 frames. Our dataset captures various underwater environments, fish species, and challenging conditions including occlusions, similar appearances, and erratic motion patterns. Additionally, we introduce Scale-aware and Unscented Tracker (SU-T), a specialized tracking framework featuring an Unscented Kalman Filter (UKF) optimized for non-linear fish swimming patterns and a novel Fish-Intersection-over-Union (FishIoU) matching that accounts for the unique morphological characteristics of aquatic species. Extensive experiments demonstrate that our SU-T baseline achieves state-of-the-art performance on MFT25, with 34.1 HOTA and 44.6 IDF1, while revealing fundamental differences between fish tracking and terrestrial object tracking scenarios. MFT25 establishes a robust foundation for advancing research in underwater tracking systems with important applications in marine biology, aquaculture monitoring, and ecological conservation. The dataset and codes are released at https://vranlee.github.io/SU-T/.
Via

Jul 03, 2025
Abstract:Multi-Object Tracking in thermal images is essential for surveillance systems, particularly in challenging environments where RGB cameras struggle due to low visibility or poor lighting conditions. Thermal sensors enhance recognition tasks by capturing infrared signatures, but a major challenge is their low-level feature representation, which makes it difficult to accurately detect and track pedestrians. To address this, the paper introduces a novel tuning method for pedestrian tracking, specifically designed to handle the complex motion patterns in thermal imagery. The proposed framework optimizes two-stages, ensuring that each stage is tuned with the most suitable hyperparameters to maximize tracking performance. By fine-tuning hyperparameters for real-time tracking, the method achieves high accuracy without relying on complex reidentification or motion models. Extensive experiments on PBVS Thermal MOT dataset demonstrate that the approach is highly effective across various thermal camera conditions, making it a robust solution for real-world surveillance applications.
Via

Jul 03, 2025
Abstract:Multi-object tracking is a classic field in computer vision. Among them, pedestrian tracking has extremely high application value and has become the most popular research category. Existing methods mainly use motion or appearance information for tracking, which is often difficult in complex scenarios. For the motion information, mutual occlusions between objects often prevent updating of the motion state; for the appearance information, non-robust results are often obtained due to reasons such as only partial visibility of the object or blurred images. Although learning how to perform tracking in these situations from the annotated data is the simplest solution, the existing MOT dataset fails to satisfy this solution. Existing methods mainly have two drawbacks: relatively simple scene composition and non-realistic scenarios. Although some of the video sequences in existing dataset do not have the above-mentioned drawbacks, the number is far from adequate for research purposes. To this end, we propose a difficult large-scale dataset for multi-pedestrian tracking, shot mainly from the first-person view and all from real-life complex scenarios. We name it ``CrowdTrack'' because there are numerous objects in most of the sequences. Our dataset consists of 33 videos, containing a total of 5,185 trajectories. Each object is annotated with a complete bounding box and a unique object ID. The dataset will provide a platform to facilitate the development of algorithms that remain effective in complex situations. We analyzed the dataset comprehensively and tested multiple SOTA models on our dataset. Besides, we analyzed the performance of the foundation models on our dataset. The dataset and project code is released at: https://github.com/loseevaya/CrowdTrack .
Via

Jun 24, 2025
Abstract:Understanding and predicting video content is essential for planning and reasoning in dynamic environments. Despite advancements, unsupervised learning of object representations and dynamics remains challenging. We present VideoPCDNet, an unsupervised framework for object-centric video decomposition and prediction. Our model uses frequency-domain phase correlation techniques to recursively parse videos into object components, which are represented as transformed versions of learned object prototypes, enabling accurate and interpretable tracking. By explicitly modeling object motion through a combination of frequency domain operations and lightweight learned modules, VideoPCDNet enables accurate unsupervised object tracking and prediction of future video frames. In our experiments, we demonstrate that VideoPCDNet outperforms multiple object-centric baseline models for unsupervised tracking and prediction on several synthetic datasets, while learning interpretable object and motion representations.
* Accepted for Publication at ICANN 2025
Via

Jun 13, 2025
Abstract:In the context of multi-object tracking using video synthetic aperture radar (Video SAR), Doppler shifts induced by target motion result in artifacts that are easily mistaken for shadows caused by static occlusions. Moreover, appearance changes of the target caused by Doppler mismatch may lead to association failures and disrupt trajectory continuity. A major limitation in this field is the lack of public benchmark datasets for standardized algorithm evaluation. To address the above challenges, we collected and annotated 45 video SAR sequences containing moving targets, and named the Video SAR MOT Benchmark (VSMB). Specifically, to mitigate the effects of trailing and defocusing in moving targets, we introduce a line feature enhancement mechanism that emphasizes the positive role of motion shadows and reduces false alarms induced by static occlusions. In addition, to mitigate the adverse effects of target appearance variations, we propose a motion-aware clue discarding mechanism that substantially improves tracking robustness in Video SAR. The proposed model achieves state-of-the-art performance on the VSMB, and the dataset and model are released at https://github.com/softwarePupil/VSMB.
Via

Jun 16, 2025
Abstract:Multi-object tracking (MOT) is a core task in computer vision that involves detecting objects in video frames and associating them across time. The rise of deep learning has significantly advanced MOT, particularly within the tracking-by-detection paradigm, which remains the dominant approach. Advancements in modern deep learning-based methods accelerated in 2022 with the introduction of ByteTrack for tracking-by-detection and MOTR for end-to-end tracking. Our survey provides an in-depth analysis of deep learning-based MOT methods, systematically categorizing tracking-by-detection approaches into five groups: joint detection and embedding, heuristic-based, motion-based, affinity learning, and offline methods. In addition, we examine end-to-end tracking methods and compare them with existing alternative approaches. We evaluate the performance of recent trackers across multiple benchmarks and specifically assess their generality by comparing results across different domains. Our findings indicate that heuristic-based methods achieve state-of-the-art results on densely populated datasets with linear object motion, while deep learning-based association methods, in both tracking-by-detection and end-to-end approaches, excel in scenarios with complex motion patterns.
* 39 pages
Via

Jun 17, 2025
Abstract:360 video captures the complete surrounding scenes with the ultra-large field of view of 360X180. This makes 360 scene understanding tasks, eg, segmentation and tracking, crucial for appications, such as autonomous driving, robotics. With the recent emergence of foundation models, the community is, however, impeded by the lack of large-scale, labelled real-world datasets. This is caused by the inherent spherical properties, eg, severe distortion in polar regions, and content discontinuities, rendering the annotation costly yet complex. This paper introduces Leader360V, the first large-scale, labeled real-world 360 video datasets for instance segmentation and tracking. Our datasets enjoy high scene diversity, ranging from indoor and urban settings to natural and dynamic outdoor scenes. To automate annotation, we design an automatic labeling pipeline, which subtly coordinates pre-trained 2D segmentors and large language models to facilitate the labeling. The pipeline operates in three novel stages. Specifically, in the Initial Annotation Phase, we introduce a Semantic- and Distortion-aware Refinement module, which combines object mask proposals from multiple 2D segmentors with LLM-verified semantic labels. These are then converted into mask prompts to guide SAM2 in generating distortion-aware masks for subsequent frames. In the Auto-Refine Annotation Phase, missing or incomplete regions are corrected either by applying the SDR again or resolving the discontinuities near the horizontal borders. The Manual Revision Phase finally incorporates LLMs and human annotators to further refine and validate the annotations. Extensive user studies and evaluations demonstrate the effectiveness of our labeling pipeline. Meanwhile, experiments confirm that Leader360V significantly enhances model performance for 360 video segmentation and tracking, paving the way for more scalable 360 scene understanding.
* 23 pages, 16 figures
Via

Jun 13, 2025
Abstract:Image editing has made great progress on planar images, but panoramic image editing remains underexplored. Due to their spherical geometry and projection distortions, panoramic images present three key challenges: boundary discontinuity, trajectory deformation, and uneven pixel density. To tackle these issues, we propose SphereDrag, a novel panoramic editing framework utilizing spherical geometry knowledge for accurate and controllable editing. Specifically, adaptive reprojection (AR) uses adaptive spherical rotation to deal with discontinuity; great-circle trajectory adjustment (GCTA) tracks the movement trajectory more accurate; spherical search region tracking (SSRT) adaptively scales the search range based on spherical location to address uneven pixel density. Also, we construct PanoBench, a panoramic editing benchmark, including complex editing tasks involving multiple objects and diverse styles, which provides a standardized evaluation framework. Experiments show that SphereDrag gains a considerable improvement compared with existing methods in geometric consistency and image quality, achieving up to 10.5% relative improvement.
Via

Jun 11, 2025
Abstract:Multi-Object Tracking (MOT) plays a crucial role in autonomous driving systems, as it lays the foundations for advanced perception and precise path planning modules. Nonetheless, single agent based MOT lacks in sensing surroundings due to occlusions, sensors failures, etc. Hence, the integration of multiagent information is essential for comprehensive understanding of the environment. This paper proposes a novel Cooperative MOT framework for tracking objects in 3D LiDAR scene by formulating and solving a graph topology-aware optimization problem so as to fuse information coming from multiple vehicles. By exploiting a fully connected graph topology defined by the detected bounding boxes, we employ the Graph Laplacian processing optimization technique to smooth the position error of bounding boxes and effectively combine them. In that manner, we reveal and leverage inherent coherences of diverse multi-agent detections, and associate the refined bounding boxes to tracked objects at two stages, optimizing localization and tracking accuracies. An extensive evaluation study has been conducted, using the real-world V2V4Real dataset, where the proposed method significantly outperforms the baseline frameworks, including the state-of-the-art deep-learning DMSTrack and V2V4Real, in various testing sequences.
* 2025 IEEE International Conference on Multimedia and Expo Workshops,
3DMM - 3D Multimedia Analytics, Search and Generation
Via

Jun 05, 2025
Abstract:Video anomaly detection (VAD) is crucial in scenarios such as surveillance and autonomous driving, where timely detection of unexpected activities is essential. Although existing methods have primarily focused on detecting anomalous objects in videos -- either by identifying anomalous frames or objects -- they often neglect finer-grained analysis, such as anomalous pixels, which limits their ability to capture a broader range of anomalies. To address this challenge, we propose a new framework called Track Any Anomalous Object (TAO), which introduces a granular video anomaly detection pipeline that, for the first time, integrates the detection of multiple fine-grained anomalous objects into a unified framework. Unlike methods that assign anomaly scores to every pixel, our approach transforms the problem into pixel-level tracking of anomalous objects. By linking anomaly scores to downstream tasks such as segmentation and tracking, our method removes the need for threshold tuning and achieves more precise anomaly localization in long and complex video sequences. Experiments demonstrate that TAO sets new benchmarks in accuracy and robustness. Project page available online.
Via
